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The volume of distribution (VD) in humans of 179 known drug molecules (acids, bases, and neutrals) has
been modeled using two biomimetic-binding measurements. The phospholipid binding (logK (IAM)) and
the plasma protein binding (logK (HSA)) have been calculated from gradient HPLC retention times on
immobilized artificial membrane (IAM) and on human serum albumin (HSA) columns, respectively. The
log VD values showed good correlation with the compounds’ relative binding to IAM and HSA as follows:
log VD ) 0.44 logK (IAM) - 0.22 logK (HSA) - 0.66;n ) 179, r2 ) 0.76,s ) 0.33, andF ) 272. It
was also observed that positively charged molecules bind relatively more to IAM, while negatively charged
ones bind more to HSA, in line with the empirical observation that bases tend to have a larger volume of
distribution than acids. These results suggest that with the help of these two simple high throughput HPLC-
based biomimetic binding measurements an important in vivo drug disposition property can be estimated
for use in early drug discovery.

Introduction

As discovery chemistry produces increased numbers of
potential drug candidates, the simultaneous optimization of
multiple properties is becoming increasingly important in the
drug selection and promotion process. The massive increase in
the cost of drug development, however, forces an early drastic
selection of those molecules that display the greatest likelihood
of success.

The ideal situation for the pharmaceutical industry would be
that the human metabolism and pharmacokinetics (PKs) of a
drug candidate compound can be predicted based on solely its
molecular structure and physicochemical properties.1,2 Physi-
cochemical properties used today in early drug discovery
programs include solubility, lipophilicity, molecular size, hy-
drogen-bonding capacity, and charge, all of which are considered
as important features because they relate to various aspects of
absorption, distribution, metabolic stability, and excretion
(ADME).3-6 However, there are no general rules for their
application, which is the dominant property in any situation.
Those compounds that fail to demonstrate satisfactory ADME
properties and desirable PK profiles can be quickly removed
from consideration as drug candidates.

Furthermore, screening large numbers of compounds for
ADME/PK properties, especially using animals,7,8 is a time-
consuming, labor-intensive, and ethically sensitive process,
which limits its utility in drug discovery. Therefore, those
relatively simple in vitro physicochemical measurements in the
initial evaluation phases that can provide a rapid selection of

compounds with adequate bioavailability and acceptable ADME/
PK properties are important.

In this paper, we investigate how the application of simple
physicochemical measurements can be applied to model the
volume of distribution (VD).

The VD is a theoretical concept that relates the administered
dose to the plasma concentration. Most commonly it is
calculated from the area under the curve (AUC) when plotting
the plasma concentration as a function of time and the area under
the moment curve to infinity (AUMC), and it is referred to as
the volume of distribution at steady state (VDss).

When a plasma concentration-time profile after intravenous
injection of the drug exhibits a biexponential decline and the
body can be viewed as a two-compartment model, an apparent
VD can be derived from the AUC (VDarea) and can be obtained
by eq 2.

wherek is the rate of clearance.
It was found that when using PKs to make drug dosing

decisions, the difference between VDareaand VDssis not usually
clinically significant.9

As an approximation, VD can be considered as a measure of
the extent of distribution of a drug from plasma into tissues.
The knowledge of VD together with the clearance determines
the half-life of a drug, which is indicative of the duration of
drug exposure.10 Low values of VD mean that with smaller
doses higher plasma concentration can be achieved. However,
low VD with high clearance indicates shorter half-life, which
means one has to apply the drug more frequently to achieve
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VDss) dose× AUMC/(AUC)2 (1)

VDarea) dose/k × AUC (2)
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the required level of plasma concentration. Drugs belonging to
various therapeutic areas require different plasma concentration
and tissue partition to achieve the desired efficacy and duration
of action, therefore, the VD has to be optimized for each targeted
pharmacological activity.

The VD of a compound depends on the volumes of the plasma
and tissues and the ratio of the bound and unbound drug in
plasma and tissue, that is, the plasma and tissue partition
coefficients of the compounds. When we know the VD and the
plasma protein binding (PPB), the tissue binding can be
estimated by the Øie-Tozer11 equation. Therefore, models
developed to estimate VD can be used to estimate tissue
distribution as well by taking into account the PPB.

The optimization of these pharmacodynamic and PK param-
eters was usually carried out at later stages of the drug
development process. However, there is a trend to investigate
these properties during the lead optimization and candidate
selection processes to avoid the attrition of compounds during
the more expensive development stage. Measurements of VD
imply in vivo experiments that cannot be carried out on large
number of compounds. Simple biomimetic partition measure-
ments that are able to estimate this in vivo parameter without
animal experiments therefore are of great value.

Various methods have been proposed to characterize VD
including allometric species scaling,12-14 direct scaling from
human tissue in vitro, and scaling from animal and human tissue
in vitro combined with species scaling.15-17The allometric
scaling predicts the pK parameters for human from in vivo
animal data on the basis of body weight.17,18 These techniques
employ the application of scaling factors such as protein binding,
brain weight,19 or maximum life span potential,13 as well as
various normalization methods.12,14 However, although allo-
metric scaling is simple and easy to handle, it does not always
give accurate predictions for all drugs, and there are problems
with its application to a wide variety of compounds.20 The
selection of the animal species may also influence the predic-
tions.

A new approach defined as fractal VD, which scales the
numerical values of VD proportionally to the body mass, was
introduced and found to give better results than interspecies
allometric scaling.21,22

In addition to these approaches, further methods to predict
VD are the physiologically based PK (PBPK) modeling23-26

and computational (in silico) approaches.27-31 PBPK uses
models of an organism that consists of several organs described
by mass balance equations with their organ volume, organ blood
flow, tissue to plasma partition coefficients, and permeation and
transport terms as inputs. In PBPK models, VD of a drug in
the body at steady state (VDss) can be calculated as a sum of
volume of tissues (Vt) into which a drug distributes multiplied
by the corresponding tissue-plasma partition coefficient (Pt/p)
in addition to the plasma volume (Vp), resulting in the following
equation:7

Various models have been proposed to predictPt/p such as
empirical, semi-empirical, tissue composition based in vivo or
in vitro based types, which have been discussed in detail in
several excellent review papers.24,32-38

The mechanistic approach helps the structure design process
by systematically changing compound lipophilicity and PPB.1,39,40

The tissues and plasma are considered as mixtures of lipids,
water, and proteins, with an overall pH of 7.4. A drug

partitioning into membrane lipid and water fractions as well as
a reversible binding to the main plasma proteins and tissue
interstitial space, are the processes currently considered for
calculating thePt/p at the organ level.17,41 Although tissue
distribution is a key parameter driving the disposition of a drug,
the lack of general models to estimatePt/p without extensive
experimental work prevented the application of PBPK modeling
in early drug discovery and development.

Changes in plasma affinity and resulting changes in unbound
fraction can cause a large change in VD, which is reflected in
only a relatively small change in the concentration of drug in
tissue.42 The relationship between PPB, tissue affinity, and VDss

is described in eq 4.

wherefu is the fraction unbound in plasma andfut is the fraction
of the drug that is unbound in tissue.

Because the half-life of a drug is determined by VD and
clearance (t1/2 ) 0.693× VD/clearance), manipulation of VD
(and clearance) is an important tool for changing the duration
of the action.

More recently, a promising new approach has been published
by Lombardo and co-workers,43,44 using the Øie-Tozer equa-
tion,11,45which describes a relationship between VDssandfut in
tissues. By measuring in vitroE log D46 at pH 7.4,fi(7.4), the
fraction ionized at pH 7.4 and PPB, a good estimate of the in
vivo VD was obtained, yielding approximately a 2-fold im-
provement in mean accuracy. They found very good correlation
(R2 > 0.86) between the observed and the predicted fraction
unbound in tissue (logfut) values for a set of 120 structurally
diverse drugs. However, the predicted versus the measured VDss

showed weaker correlation (R2 ) 0.60), and their model was
applicable only for basic and neutral compounds.

Another model for the VD has recently been presented by
Bayer AG based on measurements of membrane affinity and
PPB using the Transil technology.47 However, the details of
the model have not been published for commercial reasons as
it is built into the PK-SIM software.48,49 The model uses the
immobilized artificial membrane (IAM) partitioning and human
serum albumin (HSA) binding data obtained by Transil technol-
ogy to estimate VD and partition of compounds in various
tissues such as liver, brain, lungs, heart, and so on.

Our mechanistic approach to model in vivo VD is based on
the Brodie theory,50 which highlighted the importance of the
proportion of the compound’s partition coefficient between the
free solution and the plasma as well as the free solution and
the tissues. Stated in logarithmic terms, it employs the difference
between the logarithmic tissue and the plasma partition coef-
ficients and is illustrated by Figure 1.

Although tissues contain a large amount of proteins (including
albumin), they also contain large amounts of membranes and
other lipid-containing components. The plasma contains a large
amount of serum albumin (∼670 µM) and much smaller
amounts ofR1-acid glycoprotein (10-20 µM in normal condi-
tions), other globulins, and lipoproteins.51

Considering the earlier findings that PPB and membrane/lipid
partition are the major driving forces for a solute’s distribution
into the body,52 it offers an excellent opportunity to predict VD
from HPLC-based biomimetic binding data using IAM columns
and chemically bonded HSA stationary phases. For this reason,
we have collected a diverse set of 179 known drug (acidic, basic,
neutral, and zwitterionic) molecules for which reliable human
VD and protein binding data were available in the literature

VDss) Vp + ∑Pt/p × Vt (3)

VDss) Vp + ∑Vt × fu/fut (4)
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from clinical studies. The HSA binding and IAM partition were
measured, and these data have been related to the human VD
data taken from the literature.

Results and Discussion

We have assembled VD data from clinical studies and PPB
data for a set of 179 known drug molecules comprising acidic,
basic, neutral, and zwitterionic drugs to build a predictive model
that would not depend on any data requiring animal experiments.
(See Table 1a,b in Supporting Information for the VD and PPB
data with the reference sources53-70). When the VD data were
obtained after oral administration of the drug, the bioavailability
was taken into account. The volumes of distribution data
obtained by various methods (intravenous, oral, or intramuscular
administration) are not considered clinically significant. For
example, literature values ranged from 10.4 to 13.6 liters and
50 to 60 liters for aspirin and Tamoxifen, respectively. In a log
VD term, the differences are 0.11 and 0.08. This represents only
approximately one-third of the root-mean-square error of our
models. Some discrepancies reached over two mean-fold error,
which is approaching the error of our models. As the models
were not significantly different from the two subsets of
compounds, we have merged them together (see Supporting
Information for more details). We consider this set as a
reasonably large, diverse, and representative set of known drug
molecules suitable to develop a general model.

The basic principle of using chromatographic retention to
measure the extent a compound partitions between the mobile
and the stationary phase is well established. The binding con-
stants can be derived from retention time measurements that
can be measured very precisely. The measurements can easily
be automated, and the presence of resolved impurities does not
affect the results. We recognize that an overall binding parameter
is obtained by this method, which includes specific and
nonspecific binding.

It was described previously that the IAM lipophilicity scale
is very similar to the octanol/water lipophilicity scale for neutral
compounds based on the similarity of their solvation equations.71

The effect of charge on the interaction with IAM was also
studied at various pHs. It was found that positively charged
compounds bound stronger to IAM than would be expected from
octanol/water distribution.

We have also reported the introduction of a fast gradient
HPLC method to determine HSA binding of discovery com-
pounds using chemically bonded protein stationary phases.72 We
have shown that the HPLC-based HSA binding data correlate
with the PPB data. Kratochwill and co-workers39 have compared
our published HPLC-based data with HSA affinity constants
and found good correlation (r2 ) 0.89) between the binding

constants obtained by HPLC and traditional ultrafiltration
methods. Furthermore, the obtained HSA binding of known drug
molecules was compared with the IAM binding data.72,73 We
found that although both HSA binding and IAM partition are
mainly governed by lipophilicity, the presence of positive and
negative charges makes the two types of binding very different.
Such an effect can also be seen when we plot the two binding
constants against each other (see Figure 2 and, for measured
data, Table 1a,b).

It was observed that negatively charged compounds bind more
strongly to HSA than would be expected from the lipophilicity
of the ionized species at pH 7.4. While un-ionized molecules
partitioning into IAM showed good correlation with octanol/
water partition (logP), positively charged compounds showed
a higher partition than expected from their octanol/water
distribution. In contrast, the HSA binding of acidic compounds
was much stronger than expected from their octanol/water
distribution coefficients. These results suggest that the octanol/
water distribution coefficients at physiological pH (logDow) are
an inadequate parameter to predict the partition of ionized
compounds (both acids and bases) in biological membranes and
serum albumin.73 Our present findings are in agreement with
those of Herbette et al. and Kaliszan et al.74,75

We have investigated whether the above-described biomi-
metic partition data are suitable to model the tissue binding
(IAM) and the plasma binding (HSA).

Based on the Brodie theory50 and eq 4, we assume that the
difference between the logarithmic value of the tissue and the
plasma partition coefficients is equal to the logarithmic value
of the VD (log VD ) a × log KTISSUE - b × log KPLASMA),
and eq 5 can then be set up.

Of course, we know that this model is an oversimplification
of the in vivo situation as tissues also contain proteins, such as
albumin, and plasma contains other proteins, like AGP. How-
ever, we assume that HSA and IAM binding are the dominant
factors that govern drug distribution processes and cause major
differences between the plasma and tissue partition coefficients
(Figure 1.)

The perfect model would contain binding data for all
constituents in the plasma and the tissues, which would require
more commercially available protein and lipid stationary phases.
We have also considered including AGP binding into the
model, but a strong correlation was found between IAM and
AGP binding data for the set of compounds investigated (data
not shown). For this reason only, IAM partition data was
considered in the model (see Supporting Information for further
details).

Substituting the data for the 179 compounds, eq 6 was
obtained by multiple linear regression (MLR) analysis.

whereN ) 179, r2 ) 0.76,s ) 0.33, andF ) 272.
The plot of the literature and calculated log VD values based

on eq 6 can be seen in Figure 3. The model covers a wide range
of the VD. Compounds like Dothiepin, Tamoxifen, and Mapro-
tiline had the highest VD, 70, 55 and 53 L/kg, respectively,
used in the model. We have tried to measure Amiodarone as
well, for which the reported volume data were in the range of
66 to 71 L/kg. The HSA binding of Amiodarone was around
98% (logK (HSA) ) 4.39). The IAM binding was also very

Figure 1. The VD can be described by the ratio of compounds’
partition coefficients in plasma (KPLASMA) and tissues (KTISSUES).

Log VD ) a × log K (IAM) - b × log K (HSA) + c (5)

Log VD ) 0.44((0.02) logK (IAM) -
0.22((0.02) logK (HSA) - 0.66 (6)
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Table 1. Measured Parameters of the Investigated Drug Molecules in the Training Set and in the Test Seta

No drug
CHI

pH 2.0
CHI

pH 7.4
CHI

pH 10.5
delta CHI
neg chrg

delta CHI
pos chrg

CHI
IAM

log K
(IAM)

HSA
%

log K
(HSA)

(a) Training Set
1 Acecainide 13.3 21.3 42.5 0.0 21.2 23.3 2.00 29.8 0.69
2 Acetaminophen 17.4 16.8 -30.6 0.0 0.0 4.0 1.24 14.0 0.45
3 Acetanilide 42.0 41.2 41.8 0.0 0.6 10.7 1.43 25.3 0.62
4 Acetazolamide 39.9 33.3 21.0 6.5 0.0 -0.5 1.14 71.5 1.47
5 Alclofenac 72.9 39.4 36.2 33.5 0.0 17.8 1.71 98.7 5.11
6 Alosetron HCl 29.0 45.3 49.0 0.0 3.7 32.7 2.69 75.5 1.60
7 Amantadine 65.9 60.1 61.2 0.0 1.0 31.4 2.58 65.5 1.31
8 Amiloride 12.5 18.6 15.7 0.0 0.0 30.7 2.52 20.0 0.54
9 Amoxapine 36.4 61.5 89.6 0.0 28.1 52.7 5.69 86.2 2.15

10 Amoxicillin 40.9 18.1 8.4 22.8 0.0 6.3 1.30 16.4 0.49
11 Ampicillin 33.6 31.5 27.0 0.0 0.0 6.3 1.30 21.2 0.56
12 Apomorphine HCl 22.9 49.5 78.6 0.0 29.1 39.7 3.45 90.8 2.58
13 Aspirin 56.7 19.7 14.9 37.0 0.0 -1.7 1.12 37.3 0.79
14 Bamethan 14.6 24.0 42.4 0.0 18.4 18.6 1.75 16.5 0.49
15 Betamethasone 59.7 57.6 59.7 2.1 2.1 31.7 2.61 55.6 1.09
16 Bromazepam 44.1 54.2 56.3 0.0 2.1 28.5 2.34 68.5 1.38
17 Bromocriptin 49.1 91.6 93.0 0.0 1.4 47.9 4.70 94.1 3.13
18 Budesonide 77.2 75.0 76.6 2.2 1.6 38.7 3.32 78.7 1.73
19 Bumetanide 76.0 49.1 45.2 26.8 0.0 26.1 2.18 94.3 3.15
20 Carbamazepine 39.0 68.2 83.6 0.0 15.4 39.2 3.39 83.8 1.99
21 Cefazoline 39.3 22.0 22.8 17.3 0.0 2.5 1.21 62.7 1.24
22 Cefixime 30.0 13.8 10.3 16.2 0.0 -3.8 1.08 69.1 1.40
23 Cephalexin 21.6 23.8 23.8 0.0 0.0 -2.3 1.11 14.0 0.45
24 Chlorpheniramine 28.1 55.3 98.6 0.0 43.3 47.2 4.58 61.0 1.20
25 Chlorpropamide 68.2 34.9 33.0 33.3 0.0 5.8 1.29 91.6 2.68
26 Chlorprothixene 111.2 112.5 113.0 0.0 0.6 53.5 5.89 98.0 4.57
27 Cinoxacin 46.7 15.6 12.5 31.1 0.0 1.6 1.19 60.1 1.18
28 Clonazepam 66.5 66.2 65.1 0.3 0.0 34.8 2.90 77.1 1.66
29 Clonidine 15.1 34.3 53.2 0.0 18.9 28.8 2.37 28.0 0.66
30 Cloxacillin 73.4 45.7 43.5 27.7 0.0 23.1 1.99 92.7 2.86
31 Colchicine 46.8 44.8 47.5 2.0 2.6 23.7 2.02 37.1 0.79
32 Cytarabine -45.2 -21.7 -27.1 0.0 0.0 -15 0.93 29.8 0.69
33 Diazepam 70.9 80.6 82.3 0.0 1.7 37.4 3.18 93.2 2.94
34 Diazoxide 49.2 47.7 27.8 1.5 0.0 24.7 2.08 75.2 1.59
35 Diclofenac 89.3 52.1 49.1 37.2 0.0 33.5 2.77 99.0 5.42
36 Diflunisal 91.8 52.9 47.6 39.0 0.0 32.5 2.67 98.7 5.15
37 Diltiazem 40.7 71.7 87.2 0.0 15.5 41.6 3.71 58.5 1.15
38 Diphenhydramine 40.0 59.9 98.0 0.0 38.2 44.6 4.14 55.4 1.09
39 Diprophylline 19.7 18.2 18.1 1.5 -0.1 -4.0 1.08 25.9 0.63
40 Dipyridamole 38.2 68.9 72.1 0.0 3.3 43.2 3.94 87.3 2.23
41 Doxepin 41.2 64.3 108.2 0.0 43.9 52.3 5.61 83.2 1.95
42 Droperidol 36.3 68.0 76.4 0.0 8.3 39.3 3.40 88.0 2.29
43 Encainide 33.0 48.2 93.6 0.0 45.3 41.9 3.74 48.8 0.97
44 Ethinyl Estradiol 76.9 76.3 77.4 0.6 1.2 46.8 4.52 97.2 4.10
45 Famotidine 10.7 23.5 25.1 0.0 1.7 15.7 1.62 14.5 0.46
46 Felbamate 64.7 63.6 65.8 1.1 2.2 24.6 2.08 68.7 1.39
47 Felodipine 98.7 99.4 99.5 0.0 0.1 46.1 4.39 95.5 3.46
48 Fenclofenac 90.4 55.5 47.7 35.0 0.0 35.6 2.98 98.8 5.23
49 Fenoprofen 83.4 48.7 42.7 34.7 0.0 26.3 2.19 99.3 5.91
50 Finasteride 75.9 73.2 75.9 2.7 2.7 38.9 3.35 74.7 1.58
51 Floxacillin 76.3 48.6 45.4 27.6 0.0 23.4 2.00 96.0 3.62
52 Flumazenil 49.0 48.5 50.3 0.0 1.7 18.4 1.74 20.9 0.56
53 Flunarizine 55.2 121.2 125.8 0.0 4.6 52.6 5.67 97.5 4.26
54 Flunitrazepam 71.0 71.1 72.3 0.0 1.2 31.2 2.56 79.7 1.77
55 Fluoxetine 48.1 67.5 107.3 0.0 39.8 52.9 5.73 97.1 4.01
56 Flurazepam 38.2 69.1 93.4 0.0 24.3 41.8 3.73 59.4 1.17
57 Flurbiprofen 85.5 47.5 44.8 38.0 0.0 26.8 2.22 100.0 7.81
58 Furosemide 32.4 -21.7 -31.7 54.1 0.0 -4.2 1.08 63.8 1.26
59 Gemfibrozil 51.6 79.7 49.3 0.0 0.0 32.9 2.71 96.1 3.64
60 Glipizide 67.9 46.0 38.9 21.9 0.0 21.1 1.87 95.0 3.32
61 Griseofulvin 71.4 70.9 72.5 0.5 1.6 33.1 2.73 72.1 1.49
62 Hexobarbital 63.5 63.3 30.7 0.2 0.0 18.8 1.76 27.7 0.66
63 Hydralazine 36.9 31.9 33.2 5.1 1.3 13.3 1.52 48.8 0.97
64 Hydrochlorothiazide 32.0 30.8 -30.9 1.2 0.0 15.9 1.63 35.6 0.77
65 Hydrocortisone 52.7 50.5 52.4 2.2 2.0 27.9 2.30 45.8 0.92
66 Imipramine 46.1 69.1 118.6 0.0 49.4 54.1 6.04 83.2 1.95
67 Indomethacin 88.6 54.0 48.5 34.7 0.0 32.5 2.68 99.5 6.17
68 Indoramin 35.2 52.2 71.1 0.0 18.9 1.9 3.74 72.1 1.49
69 Isradipine 89.0 89.8 90.4 -0.8 0.6 40.0 3.49 92.8 2.86
70 Ketoconazole 40.9 78.8 81.3 0.0 2.5 42.9 3.89 93.0 2.90
71 Ketoprofen 74.3 41.2 38.1 33.2 0.0 21.9 1.92 98.4 4.80
72 Labetalol 34.5 46.3 42.2 0.0 0.0 41.4 3.67 64.6 1.28
73 Levamisol 13.3 44.5 61.0 0.0 16.5 34.7 2.89 36.4 0.78
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Table 1. Continued

No drug
CHI

pH 2.0
CHI

pH 7.4
CHI

pH 10.5
delta CHI
neg chrg

delta CHI
pos chrg

CHI
IAM

log K
(IAM)

HSA
%

log K
(HSA)

(a) Training Set
74 Levonorgestrel 85.6 85.0 85.8 0.6 0.9 41.2 3.65 93.4 2.98
75 Lignocaine 22.6 73.9 86.7 0.0 12.7 29.6 2.43 29.8 0.69
76 Lorazepam 64.6 63.9 65.4 0.7 1.6 37.3 3.16 91.1 2.62
77 Maprotiline 45.2 61.1 115.3 0.0 54.1 52.9 5.74 83.2 1.95
78 Mebendazole 48.2 61.0 59.8 0.0 0.0 37.5 3.19 89.8 2.46
79 Methyl-prednisolone 57.5 56.5 58.2 1.0 1.6 32.1 2.65 54.9 1.35
80 Metronidazole 8.5 21.0 22.4 0.0 1.5 -3.3 1.09 5.4 0.76
81 Mianserin 67.1 65.9 68.5 1.2 2.6 33.7 2.79 85.6 2.12
82 Minoxidil 23.1 33.7 35.9 0.0 2.2 19.0 1.77 27.9 0.66
83 N-Dealkyl-flurazepam 66.8 68.1 70.6 0.0 2.5 36.5 3.08 92.6 2.84
84 Nabumetone 87.9 88.7 89.4 0.0 0.7 38.4 3.29 94.3 3.16
85 Nadolol 19.4 25.9 45.2 0.0 19.3 20.2 1.83 16.5 0.49
86 Naproxen 75.2 40.2 36.1 35.0 0.0 22.9 1.97 99.9 7.06
87 Neostigmine 5.6 20.0 37.0 0.0 16.9 17.3 1.69 87.6 2.26
88 Nicardipine 46.3 101.1 103.9 0.0 2.8 45.9 4.35 93.2 2.93
89 Nifedipine 76.1 77.3 78.7 0.0 1.4 29.0 2.39 69.5 1.41
90 Nisoldipine 95.8 98.0 98.7 0.0 0.7 37.4 3.18 91.0 2.61
91 Nitrazepam 59.6 64.2 63.9 0.0 0.0 33.3 2.75 82.3 1.91
92 Nitrendipine 87.9 88.4 89.0 0.0 0.6 40.5 3.56 94.2 3.13
93 Nitrofurantoin 39.9 33.3 21.0 6.5 0.0 6.2 1.30 71.5 0.85
94 Nizatidine 5.6 29.9 33.6 0.0 3.8 17.9 1.72 20.4 0.55
95 Nordazepam 55.5 70.3 72.9 0.0 2.6 38.3 3.28 92.6 2.83
96 Nortriptyline 44.0 62.9 118.3 0.0 55.4 52.6 5.66 86.2 2.15
97 Ondansetron 31.7 51.8 60.3 0.0 8.4 37.2 3.15 77.7 1.69
98 Oxacillin 69.3 42.4 40.4 26.9 0.0 18.9 1.76 87.8 2.28
99 Oxazepam 62.3 62.0 63.7 0.4 1.7 36.2 3.04 94.2 3.12

100 Papaverine 32.6 65.8 68.0 0.0 2.2 34.4 2.86 88.6 2.35
101 Pentobarbital 62.0 59.3 31.3 2.7 0.0 22.4 1.95 28.8 0.67
102 Pentoxifylline 39.5 37.8 39.2 1.7 1.4 12.0 1.48 25.9 0.63
103 Perphenazine 38.8 76.0 93.7 0.0 17.7 56.3 6.60 94.8 3.27
104 Phenytoin 61.0 60.6 37.3 0.4 0.0 31.6 2.59 75.5 1.60
105 Pindolol 20.9 31.5 56.7 0.0 25.2 30.3 2.49 19.7 0.54
106 Piperacillin 40.0 35.1 33.1 4.8 0.0 9.4 1.39 15.4 0.48
107 Piroxicam 19.8 33.6 35.0 0.0 1.4 6.8 1.31 97.7 4.36
108 Prazosin 30.1 48.7 52.9 0.0 4.2 31.6 2.60 80.4 1.81
119 Prednisolone 51.9 49.5 51.5 2.4 2.0 28.0 2.31 43.6 0.89
110 Prednisone 52.2 51.4 53.2 0.8 1.8 25.9 2.16 37.6 0.80
111 Primidone 37.7 36.1 36.9 1.6 0.8 8.9 1.37 25.3 0.62
112 Probenecid 79.8 47.4 44.0 32.5 0.0 20.1 1.82 95.4 3.44
113 Procainamide -34.8 16.6 41.7 0.0 25.1 19.9 1.81 35.2 0.76
114 Procyclidine 91.3 90.9 89.3 0.4 0.0 46.7 4.49 96.5 3.77
115 Propranolol 37.0 50.3 83.0 0.0 32.7 45.1 4.23 66.5 1.33
116 Propylthiouracil 30.1 28.0 8.2 2.1 0.0 3.9 1.24 33.1 0.73
117 Protryptyline 43.4 60.6 117.4 0.0 56.7 51.6 5.45 83.8 1.99
118 Proxyphylline 26.5 24.9 25.4 1.6 0.5 1.1 1.17 25.9 0.63
119 Quinidine 14.6 46.4 71.2 0.0 24.8 45.0 4.20 77.0 1.66
120 Quinine 16.3 46.7 69.4 0.0 22.7 47.1 4.56 76.7 1.65
121 Ranitidine 8.9 23.7 41.7 0.0 18.0 28.0 2.31 17.5 0.51
122 Sulfachlor-pyridazine 45.7 23.2 17.5 22.5 0.0 6.0 1.29 91.5 2.67
123 Sulfameter 39.0 28.2 -26.1 10.8 0.0 3.7 1.23 83.5 1.97
124 Sulfamethoxypyridazine 36.0 33.8 14.4 2.1 0.0 9.6 1.40 84.5 2.04
125 Sulfametopyrazine 43.4 22.3 -22.7 21.1 0.0 -0.4 1.14 68.9 1.39
126 Sulfapyridine 23.5 29.9 15.4 0.0 0.0 11.4 1.46 18.8 0.53
127 Sulfinpyrazone 77.6 47.8 44.0 29.8 0.0 26.1 2.17 97.2 4.09
128 Sulfisoxazole 51.7 19.5 14.8 32.2 0.0 2.9 1.21 88.4 2.33
129 Sulphadimethoxine 56.1 38.4 18.9 17.8 0.0 10.8 1.44 94.4 3.17
130 Sulphadimidine 31.7 35.6 19.1 0.0 0.0 10.6 1.43 73.6 1.54
131 Sulpiride 9.3 23.2 48.2 0.0 25.0 25.5 2.14 34.3 0.75
132 Tamoxifen 58.6 107.9 137.2 0.0 29.3 58.7 7.29 98.4 4.84
133 Temazepam 70.9 71.0 73.0 0.0 1.9 34.7 2.89 94.9 3.28
134 Terbutaline 8.8 15.8 18.7 0.0 2.9 16.8 1.67 28.8 0.67
135 Theobromine 14.6 13.1 7.0 1.5 0.0 -4.1 1.08 64.8 1.29
136 Tinidazole 33.3 35.6 35.8 0.0 0.2 0.4 1.16 25.9 0.63
137 Tolbutamide 71.8 46.0 35.3 25.8 0.0 10.2 1.42 96.0 3.59
138 Tolfenamic Acid 100.7 61.1 52.8 39.6 0.0 41.9 3.74 98.2 4.68
139 Tolmetin 71.7 41.5 38.9 30.2 0.0 20.9 1.87 96.5 3.77
140 Tramadol 27.0 41.2 86.4 0.0 45.2 28.9 2.38 25.3 0.62
141 Trazodone 34.8 70.9 75.6 0.0 4.8 36.3 3.05 89.8 2.46
142 Trimethoprim 21.1 37.1 40.4 0.0 3.4 20.8 1.86 39.5 0.80
143 Viloxazine 27.8 42.2 55.4 0.0 13.2 31.1 2.56 20.9 0.56
144 Vinblastine 33.8 82.6 93.7 0.0 11.0 50.4 5.19 81.7 1.87
145 Vincristine 31.9 74.1 84.5 0.0 10.3 47.7 4.67 74.1 1.55
146 Warfarin 81.5 45.7 34.1 35.8 0.0 19.9 1.81 97.9 4.45
147 Zidovudine 31.6 30.1 22.5 1.5 0.0 1.3 1.18 12.8 0.43
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high; the compound eluted only on the isocratic region of the
70% acetonitrile mobile phase, giving a logK (IAM) value of
9.89. On the basis of these values, the estimated VD of
Amiodarone would be over 300 L/kg. For the correct estimation
of compounds with this extreme large volume data, we need to
apply a longer gradient method for the measurement of IAM
binding. Also, Amiodarione could not be eluted from the C-18
columns either, because of its high lipophilicity.

A further improvement in the model was obtained; by using
the deltaCHI values, we account for the presence of the positive
and negative charges. This is described by eq 7.

whereN ) 179, r2 ) 0.79,s ) 0.31, andF ) 168.
This additional influence of charge may account for the

permeability barriers and pH differences caused by charges when
compounds cross biological compartments.

The predominant charge state of the compounds at physi-
ological pH (pH 7.4) was also assigned based on the calculated
pKa values of the compounds, as is shown in Table 2 and
explained in the Experimental Section.

When acid/base class descriptors based on calculated pKa

values were introduced into the model instead of delta CHI

charge descriptors, eq 8 was obtained and shows similar statistics
to eq 7.

whereN ) 179, r2 ) 0.80,s ) 0.30, andF ) 177.
For comparison, we constructed a model using only in silico

parameters, namely, the calculated lipophilicity (c log P) and
parameters that describe the charge state of the molecules based
on calculated pKa values. Equation 9 describes the model, which
was obtained and explains reasonably the variation of the VDss.

whereN ) 179, r2 ) 0.68,s ) 0.38, andF ) 125.
Figure 4 shows the measured versus the predicted log VD

values obtained by eq 9.
It can be seen that, although a reasonable model can be

constructed, the predictive power of this model was significantly
poorer when compared with eq 7 or 8.

Statistical Analysis of the Models Obtained. All the
predictor variables in the equations are statistically significant
at thep < 0.0001 level.

Table 1. Continued

No drug
CHI

pH 2.0
CHI

pH 7.4
CHI

pH 10.5
delta CHI
neg chrg

delta CHI
pos chrg

CHI
IAM

log K
(IAM)

HSA
%

log K
(HSA)

(a) Training Set
148 Zolmitriptan 18.1 26.6 49.8 0.0 23.2 29.7 2.44 30.6 0.70
149 Zolpidem 32.0 63.4 66.1 0.0 2.7 33.9 2.81 73.6 1.54

(b) Test Set
1 Acyclovir -28.4 -22.5 -32.7 0.0 0.0 -7.0 1.03 5.4 0.29
2 Aminoglutethimide 14.9 45.4 47.1 0.0 1.7 16.0 1.63 18.9 0.53
3 Antipyrine 33.8 34.0 36.3 0.0 2.3 9.7 1.40 12.8 0.43
4 Ceftazidime 15.0 11.1 8.1 4.0 0.0 -5.1 1.06 7.9 0.34
5 Chlor-phentermine 47.8 81.2 82.8 0.0 1.7 44.1 4.06 94.0 3.08
6 Cimetidine 10.4 26.2 30.5 0.0 4.2 16.6 1.66 21.2 0.56
7 Daunorubicin 40.4 50.5 61.5 0.0 11.0 50.7 5.25 77.1 1.66
8 Dexa-methasone 60.4 59.1 60.4 1.3 1.4 31.3 2.57 70.9 1.45
9 Dicloxacillin 79.6 50.4 47.8 29.2 0.0 27.4 2.26 95.7 3.50

10 Domperidone 35.2 55.1 64.9 0.0 9.7 41.9 3.74 91.2 2.64
11 Dothiepin 43.6 40.4 112.4 0.0 72.0 52.1 5.57 87.8 2.28
12 Flunisolide 65.6 63.3 65.0 2.4 1.8 32.1 2.64 39.0 0.82
13 Ganciclovir -36.3 -22.3 -34.1 0.0 0.0 -12 0.97 12.8 0.43
14 Glyburide 86.8 68.4 52.2 18.4 0.0 34.5 2.86 98.0 4.51
15 Haloperidol 41.9 62.7 88.4 0.0 25.7 45.2 4.24 81.1 1.84
16 Ibuprofen 91.8 51.4 44.7 40.4 0.0 22.8 1.97 99.6 6.28
17 Indoprofen 65.7 36.9 34.8 28.8 0.0 20.5 1.85 98.0 4.55
18 Mephobarbital 65.6 64.2 29.5 1.4 0.0 22.2 1.93 37.0 0.79
19 Meto-clopramide 25.1 36.6 65.4 0.0 28.8 35.4 2.95 51.4 1.02
20 Nimodipine 52.7 52.3 54.0 0.5 1.8 29.0 2.39 81.4 1.86
21 Phenacetin 51.7 50.7 52.1 1.0 1.3 18.9 1.76 35.2 0.76
22 Phenobarbital 51.6 49.4 18.4 2.3 0.0 13.6 1.53 35.2 0.76
23 Phenylbutazone 81.5 51.5 41.4 30.1 0.0 25.7 2.15 98.4 4.82
24 Propafenone 44.9 90.5 99.7 0.0 9.2 42.3 3.80 91.1 2.62
25 Pyrimethamine 34.2 57.8 63.6 0.0 5.9 37.0 3.13 85.9 2.13
26 Rifampin 61.3 61.2 58.4 0.1 0.0 36.0 3.02 77.2 1.67
27 Saquinavir 48.9 89.7 92.6 0.0 2.8 43.5 3.97 95.2 3.38
28 Tetroxoprim 23.2 37.6 41.7 0.0 4.1 20.9 1.86 23.7 0.60
29 Vancomycin 14.2 20.0 18.9 0.0 0.0 21.6 1.90 38.8 0.82
30 Verapamil 44.4 72.0 100.2 0.0 28.1 42.0 3.75 77.9 1.70

a CHI, chromatographic hydrophobicity index; delta CHI neg chrg and pos chrg, the differences of the CHI values obtained at pH 2 and pH 7.4 and at
pH 10.5 and 7.4, respectively; Negative values were taken as zero; CHI IAM, chromatographic hydrophobicity index obtained on IAM column; logK
(IAM), the logarithm of the compounds partition coefficient into IAM derived from CHI IAM; HSA %, the % binding to HSA obtained from the retention
times on HSA HPLC columns; logK (HSA), the logarithm of the association constant of HSA binding derived also from the HPLC retention times.

Log VD )
0.33((0.03) logK (IAM) - 0.11((0.03) logK (HSA) -

0.016((0.003)∆CHInegchrg+
0.005((0.002)∆CHIposchrg- 0.52 (7)

Log VD )
0.30((0.03) logK (IAM) - 0.12((0.02) logK (HSA) -

0.08((0.01) pKa acid class+
0.02((0.01) pKa base class- 0.45 (8)

Log VD ) 0.085((0.02)c log P -
0.141((0.011) pKa acid class+

0.078((0.012) pKa base class- 0.089 (9)
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To further explore the predictive power and ruggedness of
the actual model, the whole data set was subdivided into a
training set and a test set. The statistical parameters obtained
are summarized in Table 3.

The calculated VD values for the test set are summarized in
Table 4 and visualized in Figure 5.

The mean fold error of the predictions was calculated from
the equations obtained. The mean fold error for eqs 6-8 was
found to be around 1.3 (1.285, 1.278, and 1.289, respectively).
Mean fold error following prediction via eq 9 using in silico
parameters was slightly higher, with a value of 1.469.

The fold error columns are shown in Table 4 and represent
the fold error of the calculations for eqs 6-9.

In a previous study, where only basic and neutral compounds
were investigated, the mean fold error was calculated to be
2.26.44 However, the ratio of compounds in the test series to
those in the training set was different (18:120). In comparison
with the error normally associated with the prediction using
interspecies scaling, which is reported to be in the range of
1.56-2.78,19,20 our mean fold errors are encouraging.

Comparison of our Models with Other Published Models.
We were also interested in testing our models using external
data. A data set of 120 compounds, published by Lombardo
and co-workers,46 offered a good opportunity to compare our
models, because 41 compounds (17 bases and 24 neutrals) were
common to the two databases. The calculated VD data based
on our models and based on the model by Lombardo et al.44

Figure 2. Effect of the positive and negative charges on the
compounds’ binding to IAM and HSA. Legend: acid (red triangle);
base (star); neutral (square); zwitterions (purple triangle).

Figure 3. The plot of the literature vs predicted log VD values for
179 compounds based on eq 6. Legend: acid (red triangle); base (star);
neutral (square); zwitterions (purple triangle).

Table 2. Determination of the Number of Charge State Groups with the
Help of Predicted pKa Values in Acid/Base Classes

charge state group acid class base class

0 no acidic group no basic group
1 pKa > 8.5 pKa e 6.0
2 pKa 7.5- 8.5 pKa 6.0- 7.0
3 pKa 7.0- 7.49 pKa 7.01- 7.5
4 pKa 6.5- 6.99 pKa 7.51- 8.0
5 pKa 6.0- 6.49 pKa 8.01- 8.5
6 pKa 5.5- 5.99 pKa 8.51- 9.0
7 pKa < 5.5 pKa > 9.0

Figure 4. The plot of the literature vs in silico predicted log VD values
for 179 compounds obtained by eq 9. Legend: acid (red triangle); base
(star); neutral (square); zwitterions (purple triangle).
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are listed in Table 5. The comparison of the observed and
predicted VD values by our models and Lombardo’s model were
very similar. Mean fold error values of predictions based on
our models were slightly better for the overlapping data set than
that obtained for our whole dataset with 179 compounds. Also
the correlation between the measured and observed values by
our models (r2 ) 0.58- 0.60; except eq 9) were similar to that
obtained for Lombardo’s model for the overlapping 42 com-
pounds (r2 ) 0.60).

To examine the application of our model in daily practice,
we applied our measurements and the equations for new research
compounds.

A comparison of the in-house measured and calculated VD
in rats for 247 new research compounds from several projects
studied at GlaxoSmithKline showed a very similar scatter plot
and cluster formation according to their acid/base character as
we observed in the case of known drug molecules on human data.

Figure 6 shows the plots of the predicted versus the observed
log VD data for new research compounds compared to the

Table 3. Statistical Characteristics of the Models Obtained for the Training Set and Test Set

training set test set

eq No equation N R2 RMSE F N R2 RMSE F

6 0.43logK (IAM) -
0.23logK (HSA) - 0.65

149 0.75 0.33 218 30 0.69 0.40 62

7 0.33logK (IAM) -
0.12logK (HSA) +
0.003deltaCHIpos-
0.016deltaCHIneg- 0.51

149 0.80 0.31 140 30 0.73 0.37 76

8 0.30logK (IAM) -
0.11logK (HSA) +
0.022pKa base class-
0.08pKa acid class- 0.45

149 0.82 0.29 164 30 0.72 0.38 71

9 0.10c log P +
0.07pKa base class-
0.14pKa acid class- 0.11

149 0.72 0.36 122 30 0.51 0.50 29

Table 4. The Literature and Predicted VD Data and the Fold Error Obtained by eq 6 - to 9 for theTest Set of Compounds

No drug
log VD

obs
log VD

calc eq 6
log VD

calc eq 7
log VD

calc eq 8
log VD

calc eq 9
fold error

eq 6
fold error

eq 7
fold error

eq 8
fold error

eq 9

1 Acyclovir -0.16 -0.28 -0.21 -0.16 -0.27 1.34 1.16 1.02 1.34
2 Amino-glutethimide 0.15 -0.07 -0.04 -0.08 -0.10 1.66 1.53 1.69 1.76
3 Antipyrine -0.22 -0.15 -0.10 -0.06 -0.01 1.18 1.32 1.45 1.62
4 Ceftazidime -0.64 -0.28 -0.27 -0.73 -1.36 1.23 1.25 2.31 9.88
5 Chlorphentermine 0.38 0.39 0.45 0.59 0.69 1.02 1.17 1.63 2.03
6 Cimetidine 0.00 -0.07 -0.03 0.03 0.07 1.18 1.06 1.06 1.19
7 Daunorubicin 1.36 1.22 1.05 1.01 0.19 1.39 2.07 2.27 14.71
8 Dexamethasone -0.09 0.12 0.14 0.16 0.07 1.20 1.24 1.31 1.07
9 Dicloxacillin -0.07 -0.47 -0.66 -0.71 -0.74 3.77 2.42 2.15 2.02

10 Domperidone 0.76 0.35 0.42 0.52 0.76 2.52 2.15 1.72 1.00
11 Dothiepin 1.85 1.21 1.26 1.12 0.78 4.28 3.82 5.36 11.55
12 Flunisolide 0.26 0.29 0.22 0.25 0.13 1.09 1.08 1.01 1.32
13 Ganciclovir 0.04 -0.33 -0.25 -0.19 -0.29 1.51 1.24 1.09 1.35
14 Glyburide -0.52 -0.44 -0.42 -0.66 -0.69 2.60 2.73 1.55 1.47
15 Haloperidol 1.26 0.74 0.73 0.74 0.64 3.24 3.32 3.30 4.11
16 Ibuprofen -0.82 -1.22 -1.28 -1.13 -0.74 2.48 2.86 2.04 1.21
17 Indoprofen -1.00 -0.88 -0.92 -0.96 -0.76 1.31 1.19 1.10 1.72
18 Mepho-barbital 0.40 0.00 0.00 0.04 0.05 2.52 2.48 2.28 2.24
19 Metoclopramide 0.53 0.38 0.42 0.48 0.63 1.41 1.28 1.12 1.24
20 Nimodipine -0.05 -0.05 0.04 0.06 0.31 1.68 1.37 1.31 1.35
21 Phenacetin 0.18 -0.07 -0.04 -0.01 0.07 1.77 1.64 1.53 1.28
22 Pheno-barbital -0.27 -0.17 -0.14 -0.16 -0.18 1.08 1.15 1.10 1.04
23 Phenyl-butazone -0.77 -0.81 -0.88 -0.42 0.11 1.11 1.28 2.22 7.64
24 Propafenone 0.56 0.38 0.44 0.56 0.77 1.49 1.30 1.02 1.62
25 Pyrimethamine 0.46 0.21 0.27 0.30 0.34 3.74 4.35 4.64 5.07
26 Rifampin -0.01 0.26 0.27 0.35 0.64 4.83 4.93 5.88 11.38
27 Saquinavir 1.00 0.28 0.38 0.44 0.58 5.20 4.13 3.63 2.61
28 Tetroxoprim -0.10 0.01 0.04 0.11 0.19 1.28 1.36 1.60 1.92
29 Vancomycin -0.41 -0.02 0.01 0.03 -0.22 2.43 2.63 2.73 1.55
30 Verapamil 0.64 0.57 0.60 0.61 0.70 1.27 1.18 1.17 1.07

Mean fold error 2.09 2.02 2.08 3.31

Figure 5. The plot of the literature vs predicted log VD values for
149 training set compounds and for 30 test set compounds based on
eq 6.
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known drug molecules in training set for human data. It can be
seen that the human model works reasonably well to estimate
VD in rats as well. Though our aim was to model directly the
human VD, we have fitted an equation for the rat VD data as
well for the “in-house” research compounds:

wheren ) 247, r2 ) 0.66,s ) 0.35, andF ) 234.
From the comparison of the regression coefficients of eqs 6

and 10, we can conclude that the tissue/plasma ratio is different
in rats and humans, so allometric scaling should be applied when
rat data are extrapolated to human data. The fact that our
measured membrane partitioning [logK (IAM)] and HSA
binding [logK (HSA)] parameters sufficiently can describe the
rat VD suggests that our mechanistic approach was correct when
we assumed that the VD can be considered as the manifestation
of the difference between the tissue and plasma partitioning of
the compounds.

Qualitative Picture. The presence of charged functions
within molecules has a major impact on their VD. In general,
acidic compounds have the smallest VD and basic compounds
have the largest VD (see Figure 3). Similarly, acidic compounds

bind more strongly to HSA, while basic compounds bind more
strongly to phospholipid membranes (see Figure 2).

Binding affinities of drugs to plasma proteins and tissue
components are also dependent on lipophilicity; both are high
for highly hydrophobic compounds.

These rough guidelines can be formulated to express how
the relative magnitude of VD depends upon the ionization state
at pH 7.4 and lipophilicity. However, we can expect deviations
from these general rules if a compound binds exceptionally
strongly to any other tissue and/or plasma components that are
present in a lower concentration.

Conclusion

The VD in humans for 179 known drug molecules have been
estimated successfully using the previously published high
throughput HPLC based measurements of HSA binding and
artificial membrane partition data.

The model is based on the premise that the extent of VD
depends on the difference between the tissue partition and the
plasma partition of a compound. The data supports the assump-
tion that the difference between the tissue and plasma partition
is dominated by the different binding strength of a compound
to phospholipid membrane and serum albumin.

Table 5. Comparison of the Observed and Calculated VD Data for the 41 Overlapping Drug Moleculesa

No drug
log VD

obs
calc

log VDa

calc
log VD

eq 6

calc
log VD

eq 7

calc
log VD

eq 8

calc
log VD

eq 9

fold
error
eq 6

fold
error
eq 7

fold
error
eq 8

fold
error
eq 9

1 Antipyrine -0.22 -0.20 -0.15 -0.10 -0.06 -0.01 1.18 1.32 1.45 1.62
2 Beta-methasone 0.15 0.11 0.22 0.18 0.21 0.07 1.27 1.18 1.25 1.10
3 Bromazepam -0.05 -0.08 0.04 0.09 0.12 0.14 1.20 1.36 1.45 1.50
4 Chlor-pheniramine 0.51 0.80 1.03 0.98 0.93 0.64 3.38 2.99 2.69 1.38
5 Cimetidine 0.00 -0.01 -0.07 -0.03 0.03 0.07 1.18 1.06 1.06 1.19
6 Clonidine 0.32 0.42 0.21 0.24 0.30 0.40 1.29 1.20 1.05 1.20
7 Colchicine 0.13 -0.14 0.03 0.03 0.07 0.01 4.81 4.85 4.46 5.05
8 Dexa-methasone 0.09 0.04 0.12 0.14 0.16 0.07 1.20 1.24 1.31 1.07
9 Diazepam 0.04 0.10 0.05 0.17 0.20 0.28 1.17 1.15 1.23 1.47

10 Diphen-hydramine 0.65 0.74 0.87 0.83 0.81 0.68 1.65 1.52 1.44 1.07
11 Domperidone 0.76 0.89 0.35 0.42 0.52 0.76 2.52 2.15 1.72 1.00
12 Felodipine 1.00 0.36 0.45 0.51 0.49 0.45 3.57 3.12 3.22 3.55
13 Flumazenil 0.02 -0.17 -0.04 -0.01 0.03 0.08 1.19 1.12 1.03 1.08
14 Haloperidol 1.26 0.90 0.74 0.73 0.74 0.64 3.24 3.32 3.30 4.11
15 Hydro-cortisone 0.40 -0.13 0.13 0.10 0.14 0.06 3.04 2.88 3.13 2.63
16 Labetalol 0.97 0.39 0.63 0.54 0.51 0.37 1.13 1.39 1.49 2.07
17 Lorazepam 0.18 0.13 0.11 0.20 0.23 0.20 1.24 1.01 1.07 1.00
18 Maprotiline 1.72 0.87 1.36 1.31 1.23 0.85 1.86 2.12 2.54 6.01
19 Methylprednisolone 0.08 0.10 0.24 0.21 0.22 0.07 1.23 1.17 1.20 1.20
20 Meto-clopramide 0.53 0.65 0.38 0.42 0.48 0.63 1.41 1.28 1.12 1.24
21 Metronidazole -0.13 -0.24 -0.25 -0.19 -0.14 -0.08 1.32 1.14 1.02 1.13
22 Nadolol 0.30 0.34 0.02 0.09 0.20 0.44 1.82 1.56 1.20 1.46
23 Nifedipine -0.11 0.11 0.05 0.10 0.13 0.31 1.44 1.62 1.74 2.59
24 Nizatidine 0.08 -0.17 -0.04 -0.01 0.14 0.31 1.33 1.22 1.14 1.71
25 Nortriptyline 1.36 0.84 1.28 1.26 1.18 0.83 1.01 1.05 1.26 2.80
26 Oxazepam -0.22 0.13 -0.05 0.10 0.14 0.20 1.50 2.14 2.35 2.66
27 Pentoxifylline 0.38 -0.21 -0.16 -0.13 -0.06 -0.02 6.11 5.65 4.81 4.41
28 Perphenazine 1.35 1.13 1.43 1.31 1.30 0.69 1.35 1.02 1.01 4.11
29 Pindolol 0.36 0.45 0.29 0.32 0.40 0.57 1.02 1.04 1.24 1.86
30 Prednisolone 0.18 -0.12 0.14 0.10 0.14 0.04 2.63 2.45 2.68 2.09
31 Prednisone -0.01 -0.13 0.09 0.09 0.11 0.06 1.27 1.27 1.32 1.18
32 Procainamide 0.28 0.38 -0.05 0.07 0.16 0.55 2.12 1.63 1.30 1.85
33 Propafenone 0.56 0.70 0.38 0.44 0.56 0.77 1.49 1.30 1.02 1.62
34 Propranolol 0.63 0.61 0.85 0.82 0.84 0.68 1.79 1.64 1.72 1.19
35 Quinidine 0.43 0.59 0.77 0.74 0.79 0.68 1.68 1.58 1.77 1.37
36 Ranitidine 0.11 0.34 0.22 0.24 0.32 0.39 1.28 1.34 1.61 1.90
37 Terbutaline 0.20 0.16 -0.09 -0.04 0.05 0.31 2.22 1.97 1.61 1.13
38 Trazodone 0.00 0.33 0.10 0.20 0.35 0.72 1.26 1.59 2.25 5.24
39 Trimethoprim 0.26 0.13 -0.04 0.01 0.08 0.21 1.76 1.58 1.33 1.01
40 Verapamil 0.64 0.89 0.57 0.60 0.61 0.70 1.27 1.18 1.17 1.07
41 Zidovudine 0.15 -0.25 -0.25 -0.20 -0.23 -0.24 2.99 2.72 2.90 2.99

Mean fold error 1.89 1.81 1.80 2.10

a Published by Lombardo et al. (43).

log VD ) 0.27 logK (IAM) - 0.29 logK (HSA) - 0.30
(10)
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It has been shown that in addition to a compound’s lipophi-
licity, the presence of positive or negative charges at physi-
ological pHs significantly affects the serum albumin binding
and membrane partition and hence the VD.

It has been demonstrated that using the high throughput HPLC
based biomimetic binding measurements (serum albumin bind-
ing and artificial membrane partition) on early drug discovery
compounds their in vivo disposition can be estimated success-
fully. The application of these models helps to reduce the
number of animal experiments. Also, it helps the compound
design process, as chemists can be advised to modify the
albumin binding and membrane partition data to tune the desired
VD.

Experimental Section

VD and PPB data for 179 compounds were obtained from the
scientific literature after an extensive comparative search. The data
and the reference sources are compiled in Table 1a,b in Supporting
Information. The compounds investigated in this study were all
available commercially and selected to cover a wide variety of
chemical structures, solute properties, pharmacological activities,
and PK characteristics. In cases where the VD data were given for
the whole body volume in liters, an average body weight of 70 kg
for each study subject was assumed, and the VDss was expressed
as L/kg.

Sample Preparation.Each compound was dissolved individually
in DMSO (analytical grade, Fisher Scientific, Loughborough, U.K.)
at a concentration of 10 mM. The 10 mM DMSO solutions then
were diluted down 20 times with a mixture of 50% ammonium
acetate buffer and 50% 2-propanol to ensure maximum dissolution,
and 5µL aliquots of the solutions were injected onto the HPLC
columns.

Chromatographic System.Agilent HP1100 HPLC instruments
equipped with diode array UV absorption detectors (Agilent

Figure 6. Application of model eq 6 for predicting log VD values of
project compounds. The plot of the in house measured in rats vs
predicted log VD values for project compounds. Legend: training set,
150 compounds, of the human log VD model (square); project 1
(diamond); project 2 (star); project 3 (triangle); project 4 (circle).

Figure 7. (a) The relationship of logk (HSA) to logP (octanol/water)
for the acetophenone homologuous series. (b) The relationship of log
K (HSA) to log P (octanol/water) for the acetophenone homologous
series.

Figure 8. (a) The relationships of the logk (IAM) values to logP
(octanol/water) for the acetophenone homologous series. (b) The
relationships of the logK (IAM) values to logP (octanol/water) for
the acetophenone homologous series.
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HP1100) were used throughout. In all cases, chromatograms were
recorded by HP Chemstation program at 230 and 254 nm.

HSA Binding Measurements.Chemically bonded HSA col-
umns, with the dimensions of 50 mm× 3 mm id were obtained
from Chromtech, Ltd (U.K.).

Mobile phase flow rate was 1.8 mL/min. The starting mobile
phase was 50 mM aqueous ammonium acetate, with the pH adjusted
to 7.4. Mobile phase B was 100% 2-propanol (HPLC grade). The
gradient retention times of the compounds were recorded using the
following gradient profile: 0 to 3 min linear gradient from 0 to
30% 2-propanol; 3 to 6 min constant mobile phase composition of
30% 2-propanol; 6 to 6.5 min linear gradient back to 0% 2-propanol
(100% ammonium acetate buffer); and 6.5 to 10 min 100%
ammonium acetate buffer.

The HSA column retention characteristics were calibrated with
10 known drug molecules (Warfarin, Nizatidine, Bromazepam,
Carbamazepine, Budesonide, Piroxicam, Nicardipine, Ketoprofen,
Indometacine, and Diclofenac), as described previously,72 using
literature % PPB data. The slope and the intercept of the logarithm
of gradient retention time versus logK × PPB calibration line was
used to estimate the logK (HSA) values from the logtR values of
the measured compounds.

It was found that the logk (HSA) values for the acetophenone
homologues did not show a linear relationship with the logP values
as it could have been expected from the theory derived for isocratic
HPLC elution, see Figure 7a. The explanation for this is the
application of the 2-propanol gradient. To scale the logk (HSA)
values to other linear free energy related parameters such as logP
(octanol/water partition coefficients) or logkaff constants to the target
receptor, we have taken the exponential value of the logk (HSA).
We express it as logK (HSA) to be able to differentiate it from the
previously published logk (HSA) data. The exponential function
compensates for the effect of the gradient, that is, the constant

change of the mobile phase composition during the binding
measurements. The obtained logK (HSA) values show a linear
relationship with the logP values for the acetophenone series, as
is shown in Figure 7b.

To obtain logK (HSA) values from chromatographic retention
data, the following mathematical transformation was made: Cal-
culate logtR from tR, then convert logtR to log k using the slope
and intercept of the calibration line (logk ) slope× log tR +
intercept), then calculate logK as logK ) elogk. The literature PPB
data were converted into logK × PPB, as described earlier.72

Phospholipid Binding Measurements.The binding measure-
ments were carried out using IAM column (IAM PC2 S-12-300-
IAM-PC), with the dimensions of 150× 4.6 mm obtained from
Regis (Morton Grove, U.S.A.), as described previously.71 This
stationary phase is composed of chemically bonded phosphatidyl
choline (double acyl chain and glycerol backbone). Acetonitrile
gradient was applied with the 50 mM ammonium acetate buffer,
using 2 mL/min mobile phase flow rate. The following gradient
profile was used: 0 to 2.5 min linear gradient from 0 to 70%
acetonitrile; 2.5 to 3 min 70% acetonitrile; 3 to 3.2 min 70 to 0%
acetonitrile; and 3.2 to 5 min re-equilibration with 100% 50 mM
ammonium acetate buffer (pH 7.4).

The chromatographic hydrophobicity index values on the IAM
column (CHI(IAM)) were obtained using the data for the calibration
standards obtained from isocratic measurements, as described
previously.71 Although the gradient retention times CHI(IAM)
values and logk (IAM) values obtained for the acetophenone
homologues did not show linear correlation with logP values due
to the application of the acetonitrile gradient (see Figure 8a), the
log K (IAM) values show a linear relationship with logP, as
demonstrated in Figure 8b.

Therefore, the CHI(IAM) values were transformed to logK
(IAM) values by eqs 11 and 12.

Figure 9. Reproducibility of the IAM HPLC column. Acids tend to give lower retention and bases longer retention as the column is aging.

Figure 10. The CHI values at three different pHs for neutral, acidic, basic, amphoteric, and zwitterionic compounds.
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The constants were chosen to represent the CHI(IAM) values
on the octanol/water logP scale.

We have observed a variation of retention behavior of the IAM
column with charged compounds. We suggest conditioning the new
columns by running several hundred fast gradients before use. After
conditioning, the columns provided reproducible behavior for
measuring up to 5000 compounds. The CHI(IAM) values for neutral
compounds were very reproducible, practically within 2-4 CHI-
(IAM) units throughout the column lifetime. To confirm the viability
of the column, we suggest to check the CHI(IAM) values for three
basic compounds (propranolol, 44-49; chlorpromazine, 58-62; and
imipramin, 51-57) and three acidic compounds (warfarin, 28-
22; diclofenac, 40-35; and ketoprofen, 22-18). We expect the
values to be in these ranges. Figure 9 shows the change of the
CHI(IAM) values for three neutral, three basic, and three acidic
compounds that we run regularly to monitor the column aging.

Chromatographic Hydrophobicity Index (CHI) Measure-
ments.In previous publications, we introduced a CHI that utilizes
retention times from a rapid gradient reversed phase elution to
measure lipophilicity.73,74

We used this method to determine CHI lipophilicity data at three
pHs (pH2, pH 7.4, and pH 10.5) on Luna C18(2) column
(Phenomenex, Cheshire, U.K.) 5µm, with the dimensions of 50×
3 mm.

At this point it should be noted that the CHI lipophilicity scale
differs from the octanol/water lipophilicity scale, as revealed by
the linear solvation equation.76 It has been shown that the CHI
lipophilicity is more similar to a water/alkane type of partition in
that it is sensitive to the H-bond acidity of the compounds, whereas
the octanol/water partition is not.

CHI values measured at three different pHs were also used to
infer acid/base character of the compounds using the differences
between the CHI values (delta CHI). Figure 10 illustrates the
changes of CHI lipophilicity for acidic, basic, and neutral com-
pounds.

As a measure of negative and positive charges present at
physiological pH, we have generated a∆CHInegchrg and a
∆CHIposchrg parameter from the difference of lipophilicity at pH
2 and pH 7.4 and pH 10.5 and pH 7.4, as described by the eqs 13
and 14:

The ∆CHInegchrg and a∆CHIposchrg values are positive
numbers when negative or positive charges, respectively, are
present. Large∆CHI values indicate a higher proportion of the
ionized form present at pH 7.4. When the difference in CHI values
produces negative values, we substituted zero.

In Silico Calculation. The computedC log P data were
calculated using software from ACD logD Suite, version 4.5
(ACDLabs, Toronto, Canada), and the pKa values were calculated
with pKalc 3.2 prediction module of Pallas system (CompuDrug
Chemistry, Ltd., Hungary). The predominant charge state of
compounds with measured CHI data was assigned with the help of
these predicted pKa values. Altogether, eight charge state groups
were defined, as shown in Table 2. Classification was based on
the pKa values of acidic and basic groups. Zero means no acidic or
basic groups are present. Increasing numbers (up to 7) denote
decreasing acidic pKa and increasing basic pKa values. Thus, higher
numbers signify higher % ionization of the compound at physi-
ological pHs.

Model Building for VD. The statistical analyses were performed
using JMP 3.2.5 version (SAS Institute, U.S.A.) statistical software.

For the visualization and interactive analysis of our results,
Spotfire Decision Site program, Version 7.1.1 (Spotfire Inc.,
Somerville, U.S.A.) was used.

Stepwise regression analysis was used to determine the statisti-
cally significant parameters that can model VD.

To test the robustness of the models, the data sets were divided
into a training set and a test set. The compounds were ranked based
on their ascending VD values, and every fifth compound was
allocated in the test set (30 compounds). The remaining ones were
assigned into the training set (149 compounds). All the data were
included in the models, and no outliers were removed from the
data sets. MLR analysis was performed on the training set, and the
model equations obtained were applied to calculate the VD values
of the compounds in the test set.

The goodness of prediction has been presented by mean fold
error and prediction accuracy (i.e., compounds predicted to have a
VD value within a 2-fold error from the experimental value).

Fold error of prediction for VD test set values was calculated
according to the following equation:
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